

The Secret World of Tubulins

Liat Ben Sira Catherine Garel

NO CONFLICT OF INTEREST

Microtubules

- Tubulins isoforms required for functions during cerebral cortex formation: neurogenesis, neuronal migration and post-migrational organization
- Most common isoforms (alpha- and beta-tubulins) globular subunits coassemble into large polymers >> microtubules

Fig. 2. The role of microtubules in cerebral cortex development.

MT formation affect multiple aspects of brain development

- Microcephaly (impaired mitosis)
- Lissencephaly, band heterotopia (impaired neuronal migration)
- Anomalies of white matter pathways (impaired axonal pathfinding)
- Anomalies of the cranial nerves (impaired axonal pathfinding)
- Malformations of the midbrain and hindbrain (impairment of both neuronal migration and axonal pathfinding)

How do mutations of all these genes give nearly the same malformation?

All associated with abnormal protein transport along **microtubules**:

- Mitosis dysfunction > microcephaly
- Neuronal migration > heterotopia, pachygyria
- Axon guidance disturbance > abnormal WM, CTS
- Abnormalities of internal capsule, CC, hypoplasia of brainstem
- Migration/post-migration defects > abnormal cortex and hippocampal lamination, cerebellar dysplasia

Tischfield et al., 2011 ;Cushion et al., 2013 ; Bahi-Buisson et al., 2014 ; Kato, 2015 ; Oegema et al., 2015 ; Breuss et al., 2016;Romaniello et al., 2015/2017

Cortical malformations

Extra cortical abnormalities

Axonal pathfinding disturbed

- Congenital fibrosis of the extraocular muscles or hypoplastic olfactory nerves
- Hypoplasia or absence of the corpus callosum;
- Small, often asymmetric brain stem
- Abnormal-appearing, fused striatum due to the absence of various parts of the internal capsule (most commonly the anterior limb)
- Diminished overall white matter volume

Characteristic Radiologic Hallmarks

- Dysmorphic basal ganglia (fusion of the caudate nucleus and putamen with absence of the anterior limb of the internal capsule), rounded thalami "hook" ventricle
- Commissural hypoplasia/ ACC
- Cerebellar hypoplasia/dysplasia
- Hypoplasia of the oculomotor /optic nerves
- Dysmorphic hind-brain structures
- Wide spectrum of MCDs

MCD Patterns

Affected genes are associated with predominant cortical phenotypes: (*Bahi-Buisson et al., 2014*)

- TUBA1A and TUBG1 lissencephalic brain surfaces
- *TUBB2B* polymicrogyria-like
- TUBB microcephalic brains +/- apparent cortical involvement
- *TUBB4A* seemingly unaffected brain surface but hypomyelination with atrophy of the basal ganglia and cerebellum
- TUBB2A mildly simplified cortical patterning

TUBA1A

- 1% of cases of classical lissencephaly
 - P>A pattern (similar to "LIS1")
- 30% of cases of lissencephaly with cerebellar hypoplasia (Kumar 2010)
- Various grades of lissencephaly, ranging from agyria to simplified abnormally thick convolutions (pachygyria) & perisylvian PMG
- Rare: Cerebellar hypoplasia without lissencephaly

TUBA1A 29 GAFetus

Neonate with profound microcephaly, hypotonia

:*TUBA1A* Absent CC Lissencephaly Mid/hindbrain hypoplasia

Dysgyria

- Normal cortical thickness
- Abnormal gyral pattern sulcal depth and orientation, with a smooth cortical surface and radially oriented sulci, or narrow gyri separated by abnormally deep or shallow sulci
- Irregular orientation of sulci
- Not typical for PMG, pachygyria or a simplified gyral pattern
- Dysgyria may be a difficult diagnosis
- Can be subtle

First Pregnancy

Second Pregnancy

Daughter

Father TUBB

Cohort with a distinct and very similar MRI pattern

TUBB3

- TUBB3 cortical malformations can be mild
- Hard to differentiate radiologically in utero between PMG and dysgyria.
- Autopsy in fetal TUBB3 related dysgyria are abnormal orientation of sulci and gyri, but normal neuron morphology and layering.
- Clinically can remain only mildly symptomatic

Congenital Mirror Movements Associated With Brain Malformations Child Neurology 2021

Fetal MRI 29 wk TUBB3

TUBB3

Contents lists available at ScienceDirect

AEDIATR

European Journal of Paediatric Neurology

Autosomal dominant *TUBB3*-related syndrome: Fetal, radiologic, clinical and morphological features

Lubov Blumkin ^{a, b, c, *}, Zvi Leibovitz ^{d, e}, Karina Krajden-Haratz ^{c, f}, Ayala Arad ^g, Keren Yosovich ^{a, h}, Liat Gindes ^{c, d}, Ayelet Zerem ^{a, b, c}, Liat Ben-Sira ^{c, 1}, Dorit Lev ^{a, b, c, J} Andrea Nissenkorn ^{a, b, c}, Dvora Kidron ^{c, k}, William B. Dobyns ¹, Gustavo Malinger ^{c, f}, Nadia Bahi-Buisson ^{m, n}, Richard J. Leventer ^o, Tally Lerman-Sagie ^{a, b, c}

naging of family II (cases 3 and 4, TUBB3 mutation). Brain MRI case 3 (age 3.5 years) (2a, 2b, 2c) and case 4 (a dline TI imaging depicts hypoplastic corpus callosum with underdeveloped rostrum (2a, d) (arrow head). Axia I asymmetric enlargement of left lateral ventricle (2b, 2e) (solid arrow). Coronal T2 (2c) and axial T2 (2f) o nian and adjacent cerebellar hemisphere folia (2c, 2f) (arrow) and asymmetric brainstem (2f).

Sanger sequencing revealed the same variant in ataxic gait and has severe motor dyspraxia. He l g (case 7).

'Tubulin-related cerebellar dysplasia'

- Cerebellar hemispheres +/- or vermian dysplasia
- Unilateral pattern (right > > left), localized in the postero-superior hemisphere
- Cerebellar cortex with abnormal orientation of the folia
 No cysts, thickening of cerebellar folia or signal abn.
- Frequent focal, unilateral cortical dysplasia refutes tendency to consider a focal cerebellar lesion as suggestive of prenatal acquired (disruptive)

Multicentric study

(Trousseau Hospital in Paris, France, Ichilov Hospital in Tel Aviv and Wolfson Hospital in Holon, Israel)

Drs Benhamou, Malinger, Krajden, Leibovitz

- Retrospective study from 2007 to 2022
- Inclusion criteria:
 - genetically proven cases of tubulinopathies (prenatal diagnosis)
 - at least prenatal US
- Many cases with prenatal MRI
- Retrospective review of US and MR images (biometry and morphology) major criterion (US/MRI) if present in more than 70% of cases minor criterion (US/MRI) if present in more than 50% of cases
- Outcome
- Type of mutation

- 35 patients (F= 60%, M =40%) : n=4 < 2016, n= 31
 ≥ 2016
- Consanguinity in one case (third-degree cousins)
- Overall 17/35 patients (9 families) with one of the parents (mother n=7, father n=2) showing mutation in a tubulinopathy gene (*TUBB3*, *TUBB* and *TUBB2B*)
- MRI performed in 32 cases

Biometry

•US

- Normal fetal weight n=34
- Normal HC n= 34, HC= 3rd centile n=1 and = 5th centile n=1)
- Normal TCD n=32, <3rd centile n=3
- Normal vermian height n=29

• MRI:

- Normal supratentorial biometry n= 28/32
- Normal TCD n= 28/32
- Vermian height <3rd centile in 13/30
- Anteroposterior diameter of the pons $\leq 5^{\text{th}}$ centile in 20/30 = 66.6%

Morphology: extra CNS findings

- US
 - Dysplastic kidney n=1
 - Single umbilical artery n=2

Midline distortion

73.33%

Distortion of the cavum septi pellucidi

Complete agenesis 10%

Partial agenesis 15%

Short 35% Dysgenesis 40%

Ventricular dilatation

61.76%

87.1%

Unilateral (77 %), bilateral (23%)

• Ventricular asymmetry

Dilated frontal horns

90%

Unilateral (62.96%), bilateral (37.04%)

• Dysmorphic frontal horns

Unilateral (62.96%), bilateral (37.04%)

Asymmetrical Sylvian fissures 84%

Dysgyria (19%)

Posterior fossa

Abnormal brainstem

Abnormal vermis

35.48%

Midline distortion

Distortion of the cavum septi pellucidi

Complete agenesis 8.3%

Partial agenesis 50%

Short 16.67% Dysgenesis 25%

• Ventricular dilatation

78.13%

Unilateral (84 %), bilateral (16%)

• Ventricular asymmetry

90%

• Ventricular distortion

Dilated frontal horns
 89.66%

Unilateral (70%), bilateral (30%)

• Dysmorphic frontal horns

Unilateral (58.33%), bilateral (41.67%)

Asymmetrical Sylvian fissures +/- delayed gyration

Dysgyria + asymmetrical Sylvian fissures

Abnormal vermis

Abnormal brainstem

Brainstem asymmetry

Major findings

US

- Midline distortion
- Ventricular asymmetry
- Dysmorphic frontal horns
- Dilated frontal horns
- Abnormal gyration

Minor findings

US

- Distortion of the CSP
- Anomalies of the corpus callosum
- Ventricular dilatation
- Hypertrophic basal ganglia

MRI

- Midline distortion
- Distortion of the CSP
- Ventricular dilatation
- Ventricular asymmetry
- Ventricular distortion
- Dysmorphic frontal horns
- Dilated frontal horns
- Abnormal gyration
- Abnormal bulge of the pons
- Brainstem asymmetry

MRI

• None

Termination of pregnancy in 22/35 cases at a mean gestational age of 26 weeks (25-34)

Conclusion

- Many underdiagnosed cases of tubulinopathies before 2016
- Disease probably affecting much more fetuses than previously thought
- In half patients, disease inherited from one parent (mother++), may be asymptomatic
- Diagnosis achieved by US only
- US> MRI: morphology of the CC, basal ganglia
- MRI> US: dysgyria, brainstem (bulge of the pons, asymmetry), ventricular distortion

