

Advanced Imaging in Epilepsy

Dr Volodia Dangouloff-Ros

42nd Post Graduate Course

June 06 - 10 2022

Service de Radiopédiatrie du Pr Boddaert Hôpital Necker, Paris, France

Declaration of interest

• GE Healthcare: research funding 2019-2020

Introduction

- Epilepsy :
 - Repetition of seizures
 - Focal epilepsy:
 - Partial seizures
 - Frequently drug-resistant

- Etiology:
 - Low-grade epilepsy-associated tumors
 - Malformations of cortical development
 - Vascular anomalies, sequelae, hippocampal sclerosis

Classics: ganglioglioma, DNT

"New" entities: PGNT, MVNT, PLNTY, IDG, AG

Focal cortical dysplasias

Imaging features
Dealing with "MR-negative" FCDs

- Glio-neuronal tumors
- Slow progression
- Good prognosis: survival, epilepsy
- Age at onset: adolescence (except AG)

- Imaging: common characteristics
 - Mostly cortical
 - No diffusion restriction
 - Low perfusion

Ganglioglioma

- Cortical mass
- Temporal 80%
- Nodule +/- cyst
- Contrast enhancement

Dysembryoplastic neuroepithelial tumor (DNT)

- Cortical
- Temporal 70%
- T2w high signal
- No contrast enhancement
- No mass effect

Rarer tumors

- Diffuse astrocytoma <u>MYB or MYBL1</u> altered
- AG: Angiocentric Glioma
- PLNTY: Polymorphous Low-grade Neuroepithelial Tumor of the Young
- MVNT: Multinodular and Vacuolating Neuroepithelial Tumor
- PGNT: Papillary GlioNeuronal Tumor

Diffuse astrocytoma MYB or MYBL1 altered

- IDG (Isomorphic Diffuse Glioma)
- Cortical
- T2w high signal
- No contrast enhancement
- No mass effect
- Homogeneous signal
- Ground glass

Dr Dangouloff-Ros

Angiocentric glioma

- MYB-QKI
- Younger patients (5yo)
- Cortical and white matter
- Extension towards ventricles
- T1w Hyperintense rim
- No contrast enhancement
- Low mass effect

PLNTY

Polymorphous Low-grade Neuroepithelial Tumor of the Young

- Cortex and subcortical WM
- Tissue (+/- cyst)
- T2w punctate low signal
- +/- contrast enhancement
- Coarse calcifications

Lecler et al. 2020

MVNT Multinodular and Vacuolating Neuroepithelial Tumor

- Subcortical WM
- Coalescent nodules
- T2w high signal
- No contrast enhancement
- Leave-alone lesion

PGNT Papillary GlioNeuronal Tumor

- Periventricular WM
- Tissue, cysts with septa
- Contrast enhancement

Focal Cortical Dysplasias

Focal cortical dysplasias: Pathology

Pathological subtypes

- Type I: abnormal organization of the 6-layered neocortex
 - Type Ia: Radial anomaly
 - <u>Type Ib</u>: Tangential anomaly
- Type II: disrupted cortical lamination and cytological abnormalities
 - Type IIa: Dysmorphic neurons, no balloon cells
 - Type IIb: Dysmorphic neurons and balloon cells
- Type III: FCD associated with
 - <u>Type IIIa</u>: hippocampal sclerosis
 - <u>Type IIIb</u>: brain tumor
 - <u>Type IIIc</u>: vascular malformation
 - <u>Type IIIc</u>: early life event
- mMCD: mild Malformations of Cortical Development
 - Excessive number of neurons in the molecular layer or the white matter
 - MOGHE: associated with oligodendroglial hyperplasia

Sisodiya et al. 2009

Focal cortical dysplasias: Imaging

Usual imaging features

- Dysmorphic sulcus
- Increased cortical thickness
- Gray matter white matter junction blurring
- Transmantle sign (Type II)

Focal cortical dysplasias: Imaging

Usual imaging features

- Dysmorphic sulcus
- Increased cortical thickness
- Gray matter white matter junction blurring
- Transmantle sign (Type II)

Often overlooked "MR-negative"

- → Dedicated optimized MRI protocols
- \rightarrow 3T > 1.5T (7T?)

Focal Cortical Dysplasias: MR protocol and analysis

Harmonized Neuroimaging of Epilepsy Structural Sequences

High-resolution 3D T1wimages

2D T1w

3D T1w non optimized

3D T1w optimized

Harmonized Neuroimaging of Epilepsy Structural Sequences

- High-resolution 3D T1wimages
- High-resolution 3D FLAIR images

Harmonized Neuroimaging of Epilepsy Structural Sequences

- High-resolution 3D T1wimages
- High-resolution 3D FLAIR images
- High-resolution 2D T2w images

Harmonized Neuroimaging of Epilepsy Structural Sequences

- High-resolution 3D T1wimages
- High-resolution 3D FLAIR images
- High-resolution 2D T2w images
- +/- T1w with gadolinium: tumors
- +/- SWI: cavernomas, vascular anomalies

MRI analysis

- EEG-guided
- Native thin images
- 3 planes

Focal cortical dysplasias: MRI analysis

MRI analysis

Helped by image post-processing

- Voxel-based Morphometry (VBM)
 - Gray matter increase
- Surface-based Morphometry
- Texture analysis

- Morphological:
 - Improvement of WM GM junction analysis: T2w, T1w
- Functional:
 - Perfusion: ASL
 - EEG-fMRI
 - fMRI...

European Society of Paediatric Radiology – June 9th, 2022

- Improvement of WM GM junction analysis
 - T2w: Water and WM signal suppression:
 - **DIR**: Double Inversion Recuperation
 - FLAWS: Fluid and WM Suppression

Chen et al. 2018

- Improvement of WM GM junction analysis
 - T2w: Water and WM signal suppression:
 - DIR: Double Inversion Recuperation
 - FLAWS: Fluid and WM Suppression

Urbach et al. 2022

- Improvement of WM GM junction analysis
 - T1w:
 - MP2RAGE
 - 3D-EDGE

Middlebrooks et al. 2020

- Improvement of WM GM junction analysis
 - T1w:
 - MP2RAGE
 - 3D-EDGE

Focal Cortical Dysplasias: ASL

Arterial Spin Labeling (ASL)

- Perfusion imaging without contrast injection
- Correlated with ¹⁵O₂-PET
- In epilepsy: results close to FDG-PET
 - Inter-ictal imaging: low cerebral blood flow
 - Ictal imaging: high cerebral blood flow

Arterial Spin Labeling: Inter-ictal → low CBF

Arterial Spin Labeling: Inter-ictal → low CBF

Focal cortical dysplasias: ASL

- Arterial Spin Labeling: Inter-ictal → low CBF
 - Better efficiency with registration on T1w images

Arterial Spin Labeling: Ictal → high CBF

Focal cortical dysplasias: ASL

Arterial Spin Labeling (ASL)

- Sensitivity:
 - MR visible FCD: very high
 - MR "negative" FCDs:
 - Sensitivity 60%
 - Limits:
 - Very small FCDs
 - Ill limited FCDs: large hypoperfusion
- Feasibility
 - Fast (4 minutes), no post-processing
 - Visual analysis

Focal Cortical Dysplasias: EEG-fMRI

Focal cortical dysplasias: EEG-fMRI

EEG-fMRI

- Resting state BOLD functional MRI
- With concomitant EEG within the MR magnet

Focal cortical dysplasias: EEG-fMRI

EEG-fMRI

Inter-ictal epileptiform discharge: fMRI event
 → Activation map

EEG-fMRI

- Sensitivity in MR "negative" FCDs: 50%
 - Necessary:
 - Quiet child (10 minutes)
 - Frequent inter-ictal epileptiform discharges
 - Limits
 - Feasibility
 - Time consuming
 - Other irrelevant clusters

Focal Cortical Dysplasias: Conclusion

Focal cortical dysplasias

Combination of techniques

- Remains the best technique!
- Clinical context, EEG
 - + Morphology (optimized)
 - + Post-processing
 - + ASL
 - +/- EEG-fMRI
 - + PET-FDG
 - + fMRI?

Focal cortical dysplasias

Combination of techniques

- Remains the best technique!
- Clinical context, EEG
 - + Morphology (optimized)
 - + Post-processing
 - + ASL
 - +/- EEG-fMRI
 - + PET-FDG
 - + fMRI?

Take your time!

Bill Watterson

Bibliography

- Urbach H, Kellner E, Kremers N, Blümcke I, Demerath T. MRI of focal cortical dysplasia.
 Neuroradiology. 2022 Mar;64(3):443–52.
- Bernasconi A, Cendes F, Theodore WH, Gill RS, Koepp MJ, Hogan RE, et al. Recommendations for the use of structural magnetic resonance imaging in the care of patients with epilepsy: A consensus report from the International League Against Epilepsy Neuroimaging Task Force. Epilepsia. 2019;60(6):1054–68.
- Wang I, Bernasconi A, Bernhardt B, Blumenfeld H, Cendes F, Chinvarun Y, et al. MRI essentials in epileptology: a review from the ILAE Imaging Taskforce. Epileptic Disord. 2020 Aug 7.
- Wong-Kisiel LC, Blauwblomme T, Ho ML, Boddaert N, Parisi J, Wirrell E, et al. Challenges in managing epilepsy associated with focal cortical dysplasia in children. Epilepsy Res. 2018;145:1–17.

Paediatric neuroradiology cases

