

Distribution of Intra-Thalamic Injury According to Nuclei and Vascular Territories in Children with Term Hypoxic-Ischemic Injury

<u>Luis Octavio Tierradentro-Garcia</u>, MD; Jean Henri Nel; Mohamed Elsingergy, MD; Alireza Zandifar, MD; Savvas Andronikou, MBBCh, PhD

Department of Radiology

Children's Hospital of Philadelphia

No conflicts of interest to declare

Background

Hypoxic-ischemic injury (HII) affects 1-8 per 1000 live births with a mortality rate of approximately 15-25%.

The differing imaging **patterns of injury**, and clinical outcomes vary with duration, timing, and severity of the insult.

Three major imaging patterns described:

- Basal ganglia thalamus [BGT
- Watershed [WS]
- Combined [BGT/WS]

Cognitive, language, motor, and sensory impairments have been linked to **thalamic injury** in the setting of HII.

Patterns of HIE

WATERSHED (peripheral)

BG-TH (central)

COMBINED

Lakatos, A., Kolossváry, M., Szabó, M. et al. Neurodevelopmental effect of intracranial hemorrhage observed in hypoxic ischemic brain injury in hypothermia-treated asphyxiated neonates - an MRI study. BMC Pediatr 19, 430 (2019)

Background

Thalami can be subdivided into anatomic and functional regions.

Ventrolateral thalamus injury in HII described in BGT pattern

Lack information on how other regions affected:

- intra-thalamic nuclei
- thalamic vascular areas

Tuttle, C., Boto, J., Martin, S. et al. Neuroimaging of acute and chronic unilateral and bilateral thalamic lesions. Insights Imaging 10, 24 (2019)

Purpose

To characterize the intra-thalamic injury in patients with different radiological HII patterns, based on nuclear distribution, vascular territories involved, and subjective radiological predominance.

Retrospective, multi-center study

Inclusion:

- Children with cerebral palsy allegedly due to HII
- Brain MRI with at least axial T2 / FLAIR
- Thalamic involvement in MRI report.

Exclusion criteria:

- Significant motion artifact
- Incomplete visualization of the thalami.

Pediatric neuroradiologist with >20 years experience blinded to clinical information

HII groups according to the pattern of injury

- Basal-Ganglia-Thalamus [BGT]
- Watershed [WS]
- Combined [BGT/WS]

Basal ganglia thalamus [BGT] pattern

Watershed pattern

Combined [BGT/WS] pattern

We created custom tools for nuclear regions and vascular territories:

Data collected by a trained clinical researcher, blinded to the MRI reports:

Intra-thalamic nuclei

Medial

Ventrolateral

Anterior

Pulvinar

Vascular territories

Thalamoperforating

Thalamogeniculate

Posterior choroidal

Subjective radiological distribution predominance

Whole/near-whole

Central

Anterior

Posterior

Lateral

Medial

Chi-square for associations between HII groups

Results

We evaluated **128 children** (mean age 7.35±3.6 years).

Lesions were bilaterally symmetric in 127/128 (99.2%) cases

HII group	Number (%)			
BGT	53 (41.4%)			
WS	33 (25.8%)			
BGT/WS	42 (32.8%)			
Total	128 (100%)			

Intra- thalamic nuclei	# (%)
AN	36 (28.1%)
VLN	85 (66.4%)
MN	56 (43.8%)
PN	72 (56.3%)
All	25 (19.5%)

Vascular territories	# (%)				
TPA	69 (53.9%)				
TGA	119 (93%)				
PCA	61 (47.7%)				
All	26 (20.3%)				

Subjective radiological distribution predominance	# (%)			
Whole/near- whole	23 (18%)			
Central	18 (14.1%)			
Anterior	3 (2.3%)			
Posterior	36 (28.1%)			
Lateral	41 (32%			
Medial	7 (5.5%)			

	Intra-thalamic nuclei	BGT [OR (CI)]	p-value	WS [OR (CI)]	p-value	BGT/WS [OR (CI)]	p-value
	AN	0.62 (0.28-1.39)	0.246	0.27 (0.09-0.84)	0.018*	3.98 (1.76-8.97)	0.001*
ury hd	VLN	2.41 (1.09-5.31)	0.027*	0.17 (0.07-0.41)	<0.001*	1.99 (0.87-4.58)	0.101
c inji os ar	MN	0.50 (0.24-1.04)	0.061	0.66 (0.29-1.49)	0.321	3.03 (1.41-6.52)	0.004*
emic roup	PN	0.20 (0.09-0.43)	<0.001*	6.49 (2.31-18.25)	<0.001*	1.41 (0.67-3.00)	0.367
hypoxic-ischemic injury a-thalamic groups and	AN+VLN	0.72 (0.31-1.67)	0.442	0.35 (0.11-1.08)	0.060	2.91 (1.26-6.72)	0.010*
xic- alam	AN+MN	0.46 (0.19-1.10)	0.078	0.33 (0.11-1.03)	0.047	4.64 (1.99-10.82)	<0.001*
ոypc a-thն	AN+PN	0.35 (0.13-0.95)	0.034*	0.46 (0.15-1.44)	0.175	4.68 (1.89-11.58)	<0.001*
	VLN+MN	0.61 (0.28-1.34)	0.220	0.53 (0.21-1.35)	0.180	2.73 (1.24-5.99)	0.011*
etween and intr	VLN+PN	0.44 (0.19-1.01)	0.050	0.61 (0.24-1.58)	0.305	3.35 (1.49-7.51)	0.003*
n be rns a	MN+PN	0.33 (0.15-0.75)	0.006*	0.94 (0.41-2.17)	0.884	3.20 (1.47-6.95)	0.003*
Association bo MRI patterns combinations	AN+VLN+MN	0.60 (0.25-1.46)	0.260	0.41 (0.13-1.28)	0.116	3.12 (1.32-7.40)	0.008*
soci RI pa mbi	AN+VLN+PN	0.38 (0.14-1.02)	0.049	0.49 (0.15-1.54)	0.213	4.22 (1.69-10.52)	0.001*
ASSG MRI COM	AN+MN+PN	0.35 (0.13-0.95)	0.034*	0.46 (0.15-1.04)	0.175	4 68 (1 89-11 58)	<0.001*
	VL+MN+PN	0.38 (0.15-0.93)	0.030*	0.59 (0.22-1.59)	0.294	3.86 (1.67-8.91)	0.001*
	AN+VLN+MN+PN	0.38 (0.14-1.02)	0.049	0.49 (0.15-1.54)	0.213	4.22 (1.69-10.52)	0.001*
©H							

Results

Association between hypoxic-ischemic injury MRI patterns and thalamic vascular supply.

Vascular supply	BGT [OR (CI)]	p-value	WS [OR (CI)]	p-value	BGT/WS [OR (CI)]	p-value
territories		p value	W3 [OR (CI)]	p value		p value
ТРА	1.37 (0.68-2.79)	0.382	0.18 (0.07-0.44)	<0.001*	3.01 (1.36-6.66)	0.005*
TGA	0.54 (0.14-2.12)	0.371	1.38 (1.24-1.55)	0.067	0.59 (0.15-2.31)	0.441
PCA	0.18 (0.08-0.40)	<0.001*	2 41 (1 06-5 45)	0.033*	2 75 (1 28-5 92)	0.008*
TPA+TGA	1.25 (0.62-2.53)	0.531	0.25 (0.10-0.62)	0.002*	2.37 (1.11-5.05)	0.024*
TPA+PCA	0.31 (0.12-0.82)	0.015*	0.41 (0.13-1.28)	0.116	5.70 (2.32 14.01)	<0.001*
TGA+PCA	0.19 (0.08-0.41)	<0.001*	2.74 (1.21-6.23)	0.014*	2.36 (1.11 5.02)	0.024*
TPA+TGA+PCA	0.35 (0.13-0.95)	0.034*	0.46 (0.15-1.44)	0.175	4.68 (1.88-11.58)	<0.001*

Results

Association between hypoxic-ischemic injury MRI patterns and subjective radiological distribution predominance.

Subjective radiological					BGT/WS	
distribution	BGT [OR (CI)]	p-value	WS [OR (CI)]	p-value	combination [OR	p-value
predominance					(CI)]	
Whole/near-whole	0.56 (0.21-1.48)	0.238	0.55 (0.17-1.76)	0.310	2.73 (1.09-6.85)	0.029*
Central	1.5 (0.55-4.08)	0.425	0.32 (0.07-1.47)	0.125	1.36 (0.48-3.82)	0.554
Anterior	0.7 (0.62-7.95)	0.774	0.97 (0.93-1.00)	0.302	4.25 (0.37-48.26)	0.206
Posterior	0.36 (0.15-0.86)	0.018*	11 57 (4 61-29 02)	<0.001*	0.24 (0.09-0.67	0.004*
Lateral	3.85 (1.76 8.41)	0.001*	0.22 (0.70-0.67)	0.004*	0.66 (0.29-1.50)	0.322
Medial	0.22 (0.03-1.89)	0.134	0.46 (0.05-4.00)	0.475	5.68 (1.05-30.6)	0.025*

Conclusions

- There are significant differences between MRI-based HII groups in their intrathalamic distribution, based on both nuclear groups and vascular territories.
- This was also evident through a less strict, subjective examination of the thalamic lesional predominance without the predefined tools.
- These patterns may depend on both the severity and duration of the insult (pathogenic mechanisms), as well as other superimposed factors that can potentiate damage.

Thank you!

tierradenl@chop.edu

