

Magnetic Resonance Imaging-Based Distribution and Reversibility of Lesions in Pediatric Vigabatrin-Related Neurotoxicity

<u>Luis Octavio Tierradentro-Garcia</u>, MD; Joseph Stern; Alireza Zandifar MD; Jorge Du Ub Kim, MD; Jean Henri Nel; Savvas Andronikou, MBBCh, PhD

Department of Radiology

Children's Hospital of Philadelphia

No conflicts of interest to declare

Background

SP^C Parat Evolution 5 N^{2C⁻} Parat Evolution Cosma JUNE 06-10 2022 MARSEILLE, FRANCE Palais du Phoro

Vigabatrin is a first-line antiepileptic agent for infantile spasms and refractory epilepsy

It increases GABA at neuronal synapse and disrupts excitatory neurotransmission

Up **to 34%** of patients on vigabatrin treatment exhibit brain MRI changes:

- bilateral, symmetric, and reversible
- involve deep nuclei and brainstem.

Maciel, C.B., Teixeira, F.J.P., Dickinson, K.J. et al. Early vigabatrin augmenting GABA-ergic pathways in post-anoxic status epilepticus (VIGAB-STAT) phase IIa clinical trial study protocol. Neurol. Res. Pract. 4, 4 (2022).

Shields WD, Pellock JM. Vigabatrin 35 years later - from mechanism of action to benefit-risk considerations. Acta Neurol. Scand. Suppl. 2011;1-4.

- To systematically characterize the detailed anatomical locations of brain lesions in vigabatrin-related toxicity in children.
- To determine the reversibility of lesions based on follow-up images.

Methods

Retrospective, longitudinal, single-center study (2010-2021)

Inclusion:

- Children <5 years old + intractable /refractory seizures
- Available brain MRI.
- Vigabatrin therapy at time of brain MRI.

Exclusion:

Abnormal brain morphology in regions of interest

JUNE 06-10 2022

 Insufficient diagnostic quality (absence of axial/coronal T2-W, FLAIR, and/or DWI/ADC sequences)

Methods

T2-W/FLAIR – hyperintense lesions

DWI/ADC – restricted diffusion

Pediatric neuroradiologist with > 20 years of experience

Brain MRI scans when available:

- (a) Prior to vigabatrin initiation
- (b) During vigabatrin treatment
- (c) After vigabatrin discontinued
- **Frequency** of MRI abnormalities* before, during, and after recorded
- Documented reversibility after vigabatrin discontinued
- Concordance betweenT2/FLAIR and DWI restriction assessed

JUNE 06-10 2022 MARSEILLE, FRANC

Kim DD, Sharma AK, Sharma M, Andrade A. Teaching NeuroImages: Reversible neuroimaging findings during treatment of infantile spasms with vigabatrin. Neurology. 2020 Oct 20;95(16):e2314-e2315

Results

	56° Renuel Meeting 5 42" Post Graduate Course	
متحصير المراجع	JUNE 06-10 2022 MARSEILLE, FRANCE Palais du Pharo	
	and the second	

18 patients fulfilled the eligibility50% were girls.Tuberous sclerosis (33.3%);Lennox-Gastaut syndrome (27.8%)

	Median (IQR) / count (%)	
Age at exam (months)	18.5 (12-25.2)	
Age at first dose of vigabatrin (months)	9.5 (5.7-15.2)	
Length of vigabatrin therapy (days)	309 (93-683)	
Peak dose of vigabatrin (mg/kg/day)	149 (120-150)	

	Number (%)
MRI before	13 (72.2%)
MRI during	18 (100%)
MRI after	12 (66.6%)
Total	43

Median (IQR) days:

Between vigabatrin initiation and first MRI: **178 days** (80-423)

Between MRI scan and vigabatrin discontinuation: **40 days** (14-142)

Between last dose of vigabatrin and subsequent scan: **75 days** (37-258)

Results: During vigabatrin treatment (n=18)

Anatomical structure	Hyperintensity on T2/FLAIR (n, %)	Restricted diffusion (n, %)
Globus pallidi	15 (83.3%)	14 (77.8%)
Thalami	15 (83.3%)	14 (77.8%)
Subthalamic nuclei	13 (72.2%)	14 (77.8%)
Midbrain	14 (77.8%)	12 (66.7%)
Central tegmental tracts	12 (66.7%)	12 (66.7%)
Pons	12 (66.7%)	11 (61.1%)
Hypothalamus	8 (44.4%)	6 (33.3%)
Medulla	11 (61.1%)	11 (61.1%)
Anterior commissure	8 (44.4)	13 (72.2%)
Dentate nuclei	6 (33.3%)	4 (22.2%)
Hippocampi	1 (5.6%)	2 (11.1%)

Lesion **symmetry** (left: right) 88%

JUNE 06-10 2022 MARSEILLE, FRANCE

Concordance T2/FLAIR DWI 33%

Anterior commissure***

Π

Speckled Egg Pattern: distinctive signal abnormality of thalami

Results: after vigabatrin discontinued (n=12)

Anatomical structure	Hyperintensity in T2/FLAIR (n, %)	Restricted diffusion (n, %)
Globus pallidi	2* (16.7%)	0 (0%)
Thalami	1* (8.3%)	1* (8.3%)
Subthalamic nuclei	0 (0%)	0 (0%)
Midbrain	0 (0%)	0 (0%)
Central tegmental tracts	2* (16.7%)	1* (8.3%)
Pons	2* (16.7%)	1* (8.3%)
Hypothalamus	0 (0%)	0 (0%)
Medulla	1* (8.3%)	1* (8.3%)
Anterior commissure	2* (16.7%)	0 (0%)
Dentate nuclei	0 (0%)	0 (0%)
Hippocampi	1 (8.3%)	0 (0%)

All patients had at least **partial** resolution

Two-thirds **complete** resolution T2/FLAIR

Four locations recovery to normal:

- midbrain
- dentate nuclei
- subthalamic nuclei
- hypothalami

Results

St² Annuel Meeting s Vi2⁻ Post Strotopic Corne DURE 06-10 2022 MARSEILLE, FRANCE Palais du Pharo

* Continued to demonstrate signal hyperintensity in T2/FLAIR after discontinuation of vigabatrin.

Ongoing restricted diffusion on MRI.

& This patient did not have a follow-up MRI because he died shortly after vigabatrin was discontinued.

- Globus pallidi and thalami are most commonly involved in vigabatrinrelated toxicity
- Most vigabatrin-related neuroimaging findings are reversible.
- Diffusion restriction did not add value except in demonstrating anterior commissure
- Premature patients had persistent signal abnormalities on follow-up MRI

Thank you!

55° Annuel Meeting 5 12° Pont Groduate Course JUNE 06–10 2022 MARSEILLE, FRANCE

tierradenl@chop.edu

