

55th Annual Meeting & 42nd Post Graduate Course

BONE MINERAL DENSITY IN CHILDREN: DEXA or QCT?

Hôpitaux (universitaires **Paris-Sud**

Antoine-Béclère Bicêtre Paul-Brousse

S. Chilloh, P. de Boissieu, I. Mannes, A. Linglart, E. Durand, C. Adamsbaum

Background

Bone Mineral Density

Low radiation exposure Easily available Multiple standard references

Superimposes the cortical and trabecular bone Surface density (g/cm²) Influence of soft tissues, vertebral posterior arch, material

DEXA and QCT are two available techniques for assessing BMD in children at the lumbar spine site However, few studies analyzed the additional value of each of these techniques

- **Objectives**

Patients and method Results

An assessment issue for children at risk of osteoporosis

DEXA: Dual Energy X-Ray Absorptiometry; QCT: Quantitative Computed Tomography; BMD: Bone Mineral Density

1. To assess correlation and agreement in densitometric results (BMD and Z-score) between DEXA and QCT 2. To identify differences between subgroups of pathologies

Conclusion & Discussion

Differentiates the cortical and trabecular bone True volumetric density (mg/cm³) Free from surrounding soft tissues

Low radiation exposure but > DEXA Less available Lack of standard references

Background

Patients

Children and adolescents followed in the reference center for phosphocalcic metabolism disorders (Pr Linglart)

Inclusion criteria

- Aged between 5 and 18 years old
- DEXA and QCT realized within a 3-months time frame
- Lumbar site included L2, L3 and L4 vertebrae
- Uninterpretable exam

Marked spine deformity with difficulty to contour the vertebrae

Exclusion criteria

Incorrect vertebral ROI placement

Definitions

Z-score: number of standard deviation compared to mean BMD for the same age-and-gender-matched reference values

Low mineral density: Z-score ≤ - 2

Statistics

BMD correlation: Spearman method (correlation coefficient r_s) **Z-score agreement**: Bland and Altman graph and Kappa method (Z-score \leq -2)

Patients and method

Incorrect phantom ROI placement

- BMD in g/cm²

- 80 kV, automatic mAs
- Separated cortical and trabecular BMD in mg/cm³
- **Z-score** obtained by comparison of **trabecular BMD** to both:

 - standard references today
 - Mindways software references (Siemens)

Conclusion & Discussion

Lunar Prodigy Advance (GE) bone densitomer

• Radiation exposure depending on weight and height

Z-score: obtained with integrated data of normative references depending on age, sex and ethnicity

QCT

Somatom CT-scan with Syngo-Osteo software (Siemens)

Hydroxyapatite phantom of known BMD

American published references (Gilsanz 2009):

Reference: L2-L4

Age-Matched BMI Young-Adult Region $\left(g/cm^{2}\right)$ T-Score Z-Score 0.622 0.630 0.674 0.642 0.0 L2-L4 0.648 0.0

C

Background

220 included patients

9 62% **38%** Mean age: 10,6 ± 3,2 years old Mean height: 136,2 ± 19,6 cm Mean weight: 32,7 ± 13,6 kg

> <u>Mean X-ray exposure</u> DEXA: 19,2 ± 13,2 µGy

QCT: $6 \pm 2,7$ mGy.cm (2% of abdominal CT-scan exposure if realized)

Patients and method

5 years old to < 18 years old DEXA and QCT < 3 months

Conclusion & Discussion

Population

(n = 14)

Rett syndrome* 22% (n = 49)

Neuromuscular diseases/Immobilisation

39% (n = 85)

*Rett syndrome: genetic disorder affecting girls, leading to a neurodevelopmental regression with an important intellectual and motor handicap

Pathologies

Hepatic transplant 14% (n = 32)

Hepatobiliary diseases

22% (n = 48)

Bone diseases

14% (n = 32)

Chronic gastrointestinal diseases

> 19% (n = 41)

Population

Population without Rett

Girls

Boys

Hepatobiliary disease

Hepatic transplant

Chronic gastro-intest

Bone diseases

Neuromuscular disea

Rett syndrome

No statistical difference was found between subgroups of pathologies (overlapping confidence intervals)

Background Patients and method

Poor correlation between QCT and DEXA BMD values

		Trabecular QCT vs DEXA	Corti
	n	r _s (IC)	
	220	0,50 (0,39 - 0,61)	0,
syndrome	171	0,45 (0,31 - 0,58)	(
	137	0,62 (0,50 - 0,74)	(
	83	0,29 (0,07 - 0,50)	(
es	48	0,54 (0,31 - 0,77)	0,
	32	0,61 (0,36 - 0,86)	(
tinal diseases	41	0,19 (0,14 - 0,52)	0,
	32	0,66 (0,42 - 0,89)	0,
ases/Immobilization	85	0,51 (0,32 - 0,69)	0,
	49	0,61 (0,39 - 0,83)	(

DEXA BMD was better correlated to cortical QCT than to trabecular QCT BMD

Conclusion & Discussion

Patients and method Background

Poor agreement of Z-score values and diagnostic of low BMD (Z-score ≤ -2) between QCT and DEXA

Population -2,0 -4,0 0,0 -6,0

2,0

-8,0

4,0

No statistical difference was found between subgroups of pathologies (overlapping confidence intervals)

Kappa values (with IC)

QCT <u>Gilsanz</u> VS DEXA

QCT Mindways VS DEXA - -

Conclusion & Discussion

Patients and method Background

DEXA and QCT disagreed to assess BMD in children population

child's height.

QCT Versus DXA in 320 survivors of childhood cancer: Association of BMD with fracture history, Kaste et al., Pediatric Blood Cancer 2006 Bone Acquisition in Healthy Children and Adolescents: Comparisons of Dual-Energy X-Ray Absorptiometry and Computed Tomography Measures, Wren et al., The Journal of Clinical Endocrinology & Metabolism 2006

QCT Versus DXA in 320 survivors of childhood cancer: Association of BMD with fracture history, Kaste et al., Pediatric Blood Cancer 2006

QCT standard references appear questionable: this is the first study showing lower Z-score in QCT when using Gilsanz references

Quantitative Computed Tomography (QCT) versus Dual-X-Ray Absorptiometry (DXA) in the Assessment of Bone Mineral Density in HIV-1 Infected Children, Lin et al., World Journal of AIDS 2012 Bone densitometry in pediatric populations discrepancies in the diagnosis of osteoporosis by DXA and CT, Wren et al., The journal of Pediatrics 2005

Quantitative CT Reference Values for Vertebral Trabecular Bone Density in Children and Young Adults, Gilsanz et al., Radiology 2009 Gender differences in vertebral body size in children and adolescent, Gilsanz et al., Radiology 1994

\Rightarrow Using Z-score in QCT seems inadequate to assess BMD in children \Rightarrow At present, BMD QCT can be used only in the follow-up by comparison to each patient's own baseline

Other studies also showed poor BMD correlation between DEXA and QCT. It may be explained because DEXA provides a surface density BMD that depends on the

One study found also a poor agreement between DEXA and QCT using Mindways references.

Previous studies found lower Z-score in DEXA with Gilsanz references for QCT, but not with the same CT-scan.

BMD normal values published by Gilsanz in 2009 are higher than those published in the 1990's.

Are Gilsanz reference values for QCT too high for our population? Or not adapted to our equipment?

