

Scoliosis in children and adolescents Surgical treatment, new concepts, impact for radiologists

Prof. Dr. Sébastien PESENTI, MD PhD Pediatric Orthopedics, Aix Marseille University, FRANCE

Tuesday, June 7th 2022

Marseille, FRANCE

- What is scoliosis?
 - 3-D deformity of the spine
 - Vertebral rotation
 - Coronal deviation
 - Sagittal malalignment (inconstant)
 - Most frequent spinal deformity in children (2-3%)

What is scoliosis?

- 3-D deformity of the spine
- Most frequent spinal deformity in children (2-3%)
- Scoliosis? Scolioses!
 - Based on etiology

Idiopathic scoliosis

- 75% of scoliosis in children/adolescents
- Girls > Boys
- Family history
- Right Th / Left Lumbar
- No other abnormality

- What is scoliosis?
 - 3-D deformity of the spine
 - Most frequent spinal deformity in children (2-3%)
- Scoliosis? Scolioses!
 - Based on etiology

Cerebral palsy

Trisomy 26

Hemivertebra

Marfan sd

Non-Idiopathic scoliosis

- Congenital / Malformative
- Neuro-muscular
- Syndromic
- Tumor

What is scoliosis?

- 3-D deformity of the spine
- Most frequent spinal deformity in children (2-3%)
- Scoliosis? Scolioses!
 - Based on etiology / Based on age of onset

What is scoliosis?

- 3-D deformity of the spine
- Most frequent spinal deformity in children (2-3%)
- Scoliosis? Scolioses!
 - Based on etiology / Based on age of onset

When is surgical treatment warranted?

- Imbalance
- Neurologic involvement
- Risk of progression
 - With growth
 - During adulthood

- Surgical treatment: What's new?
 - Historically: Harrington rods
 - Distraction based
 - Flattening of the spine, in every plane!
 - 1980's: Multilevel instrumentation (Cotrel-Dubousset)
 - Enhanced sagittal plane correction
 - Technical improvements
 - Early Onset Scoliosis : Advances in growth-friendly techniques
 - Growth modulation (Anterior Vertebral Body Tethering)

- Part 1 -Early Onset Scoliosis

- Onset before the age of 7
- Largely dominated by congenital scoliosis
 - Bone malformation
 - Hemivertebra
 - Bars / blocks / mosaïc
 - Rib fusions : thoracic insufficiency syndrome
- Problem : worsening with growth

- Early diagnosis on standard X-rays
- Worsening potential depends on the type of HV
 - Presence of growth plate
 - Fully segmented > Hemi-segmented > Fused

Fused Symmetric growth : stability

Fully segmented Asymmetric growth : worsening

- MRI is of major interest in diagnosis
 - HV type, growth potential
 - Visualization of growth plates, intervertebral disc (nucleus pulposus)

- MRI is of major interest in diagnosis
 - HV type, growth potential
 - Visualization of growth plates, intervertebral disc (nucleus pulposus)
 - Associated spinal cord abnormalities
 - Frequent
 - Tethered spinal cord
 - Chiari
 - Syrinx
 - Diastematomyelia
 - Etc...

- MRI is of major interest in diagnosis
 - HV type, growth potential
 - Visualization of growth plates, intervertebral disc (nucleus pulposus)
 - Associated spinal cord abnormalities
- Other abnormalities frequently associated
 - Urinary tract
 - Heart
 - ⇒ Kidney/bladder and cardiac systematic ultrasonography

Hemivertebra – Surgical management

- Early surgery (3 years old) if
 - Curve worsening
 - Fully segmented HV
- Complete resection mandatory (HV + growth plates and discs)

6 y.o.

15 y.o.

Hemivertebra – Surgical management

- Early surgery (3 years old) if
 - Curve worsening
 - Fully segmented HV
- What's new? Technical improvements
 - Preop imaging accuracy
 - Intraop
 - Ultrasonic bone scalpel (reduces bleeding)
 - Hemostatic matrix (thrombin)
 - Intraop imaging not necessary

Safer and complete resections **Posterior-only approach**

Other congenital scoliosis

- Requires both CT-scan and MRI
 - Only remaining indication for CT-scan
 - Accurate analysis of osseous malformations
 - Block, bars, synostosis, etc...
 - Improvement of image quality and 3-D reconstructions
 - Surgical treatment
 - Growth-friendly-techniques
 - Aggressive surgery in close to skeletal maturity/severe deformity
 - Posterior substraction osteotomies (PSO), vertebral column resection (VCR)
 - Intraop imaging guidance

Other congenital scoliosis

- Requires both CT-scan and MRI
 - Only remaining indication for CT-scan
 - Accurate analysis of osseous malformations
 - Block, bars, synostosis, etc...
 - Improvement of image quality and 3-D reconstructions
 - Surgical treatment
 - Growth-friendly-techniques
 - Aggressive surgery in close to skeletal maturity/severe deformity
 - Posterior substraction osteotomies (PSO), vertebral column resection (VCR)
 - Possibility of 3D printing
 - Helps for preop planning

Growth-friendly techniques

- Better try not to operate children before the beginning of growth-spurt
 - But sometimes it's impossible
- Growth-friendly techniques allows to preserve spine growth
- What's new? Electromagnetic growing rods
 - No multiple surgeries
 - Distraction every 2-3 months based on a magnet/endless screw (remote)
 - Not perfect...

- Part 2 -Adolescent Idiopathic Scoliosis

- Most frequent etiology
- Different curve patterns: Lenke classification

1 Th curve

Lenke 2 2 Th curves

Lenke 3 1 Th curve (major) 1 ThL/L curve

Lenke 4 2 Th curves 1 ThL/L curve

Lenke 5 1 ThL/L curve

Lenke 6 1 Th curve 1 ThL/L curve (major)

Surgery : improvements

Harrington distraction rods

Cotrel-Dubousset multi-level instrumentation

- Multiple anchors
- 3D-correction

Surgery : improvements toward shorter fusions

Modern instrumentations

Better coronal reduction

Surgery : improvements toward shorter fusions

Modern instrumentations

- Better coronal reduction
- Sagittal profile restoration

Surgery : improvements toward shorter fusions

Modern instrumentations

- Better coronal reduction
- Sagittal profile restoration
- Derotation

- What has changed? Sagittal plane considerations
 - Functional results, mechanical complications
 - ⇒ Radiologists must be aware!

From the bottom to the top: slope-to-slope concept

- Pelvic incidence
 - Sacrum orientation: take-off of the spine
- Lumbar lordosis
 - No normal values
 - Depends on PI (LL ≈ PI +/- 10°)
- Thoracic Kyphosis
 - No normal values
 - Depends on LL (TK $\approx \frac{3}{4} \times LL$)

Measurement of sagittal curves: fixed landmarks or spline concept?

- With PI increase, "lengthening" of the LL
- Creation of a spline
 - Requires dedicated software
 - Semi-automated reconstruction of the spline
 - Based on visual recognition of the vertebral endplates
 - ⇒ Fancy! Useful?
- In a normative population
 - T1T12 represents 97% of the spline-based TK measurement
 - L1S1 represents 98% of the spline-based LL measurement
 Don't bother...

Pesenti et al, SFCR, 2022

- Global alignment assessment
 - SVA
 - Compensatory mechanisms
 - Over or underlying curves
 - Positional pelvic parameters
 - Pelvic tilt +++ (pelvic retroversion)

- Growth modulation (AVBT): revolution?
 - Principle: hemi-epiphysiodesis
 - VB screws + Polyethylene cable (tether) / anterior approach
 - Slow growth on the concave side
 - + flexible fixation: keeps spine mobility

Growth modulation (AVBT): revolution?

- Principle: hemi-epiphysiodesis
- Slow growth on the concave side
- + flexible fixation: keeps spine mobility

- Growth modulation (AVBT): revolution?
 - Does it work?
 - Yes, but only if realized at the very beginning of growth spurt!
 - Risser 0 ++

Bernard et al, Bone Joint J, 2022

- Growth modulation (AVBT): revolution?
 - Does it work?
 - Yes, but only if realized at the very beginning of growth spurt!
 - Risser 0 ++
 - Triradiate cartilage closed
 - Risk of over-correction
 - Too young or too old
 - 25% complication rate at 5 years
 - 25% return to the OR

- Growth modulation : what does it change for radiologists ?
 - Accurate assessment of bone age / skeletal maturity
 - Risser test? Probably not enough
 - Sanders hand score: correlates with scoliosis progression

Growth modulation : what does it change for radiologists ?

- Accurate assessment of bone age / skeletal maturity
 - Risser test? Probably not enough
 - Sanders hand score: correlates with scoliosis progression

Curve	Stage 1	Stage 2	Stage 3	Stage 4	Stage 5	Stage 6	Stage 7, 8
10°	2%	0%	0%	0%	0%	0%	0%
	(0% to 40%)	(0% to 15%)	(0% to 0%)	(0% to 0%)	(0% to 0%)	(0% to 0%)	(0% to 1%)
15°	23%	11%	0%	0%	0%	0%	0%
	(4% to 69%)	(1% to 58%)	(0% to 2%)	(0% to 0%)	(0% to 0%)	(0% to 0%)	(0% to 7%)
20°	84%	92%	0%	0%	0%	0%	0%
	(40% to 98%)	(56% to 99%)	(0% to 14%)	(0% to 1%)	(0% to 1%)	(0% to 1%)	(0% to 26%)
25°	99%	100%	29%	0%	0%	0%	0%
	(68% to 100%)	(92% to 100%)	(3% to 84%)	(0% to 5%)	(0% to 5%)	(0% to 2%)	(0% to 64%)
30°	100%	100%	100%	0%	0%	0%	0%
	(83% to 100%)	(98% to 100%)	(47% to 100%)	(0% to 27%)	(0% to 22%)	(0% to 11%)	(0% to 91%)
35°	100%	100%	100%	0%	0%	0%	0%
	(91% to 100%)	(100% to 100%)	(89% to 100%)	(0% to 79%)	(0% to 65%)	(0% to 41%)	(0% to 98%)
40°	100%	100%	100%	15%	0%	0%	0%
	(95% to 100%)	(100% to 100%)	(98% to 100%)	(0% to 99%)	(0% to 94%)	(0% to 83%)	(0% to 100%)
45°	100%	100%	100%	88%	1%	0%	0%
	(98% to 100%)	(100% to 100%)	(100% to 100%)	(2% to 100%)	(0% to 99%)	(0% to 98%)	(0% to 100%)

*Unshaded cells correspond with combinations of curve size and maturity stage for which surgery would be a plausible treatment if >50° at maturity is accepted as the threshold for surgical treatment. Shaded cells correspond with combinations for which surgery would not be a plausible treatment. †Cells with wide 95% confidence intervals (shown in parentheses) correspond with groups that had too few patients for accurate estimates (or groups that had no patients) and should be interpreted with caution.

- Growth modulation : what does it change for radiologists ?
 - Accurate assessment of bone age / skeletal maturity
 - Assessment of tether breakage
 - Tether: radioluscent
 - Indirect signs
 - Change in screw angulation
 - Loss of correction
 - Imaging?
 - CT-scan? MRI?
 - Challenging...

DiBiasio et al, Pediatr Radiol, 2022

- Part 3 -Neuromuscular Scoliosis

Many etiologies

- Myopathy, cerebral palsy
- Surgical indications
 - Depends on ambulatory status
 - Walking patient: "same" principles as in AIS patients
 - Non-walking patients : pelvic obliquity is the challenge

Many etiologies

- Myopathy, cerebral palsy
- Surgical indications
 - Depends on ambulatory status
 - Walking patient: "same" principles as in AIS patients
 - Non-walking patients : pelvic obliquity is the challenge
 - Problem
 - Frailty
 - Risk of complication (infection, mechanical, death)
 - Need for less invasive surgery
 - Bipolar instrumentation

- Distraction based
 - Multiple surgeries to follow growth
 - No definitive fusion needed

Courtesy L Miladi

- Ilio-sacral screws
 - Possible misplacement
 - CT for control?

- But multiple surgeries are at-risk for these patients
 - To avoid them, creation of notched rods
 - "Automated" growth
 - Not ideal...

- **Cobb 1** 66°
- Cobb 2 67°
- T1S1 length
 33 cm

Cobb 1 44°

- **Cobb 2** 45°
- T1S1 length 36 cm

- **Cobb 1** 64°
- **Cobb 2** 64°
- **T1S1 length** 36 cm

Conclusion - 1

- Many types of scoliosis, surgical management will depend on age and etiology
 - No major paradigm shift during the last 20 years

Early onset scoliosis

- Hemivertebra
 - Early surgery (before 8 y.o.)
 - Preop MRI mandatory
 - HV type (discs (NP), growth plates)
- Other malformative scoliosis : complex surgeries
 - Only remaining indication of CT-scan
- Growth-friendly instrumentation: electromagnetic rods

Conclusion - 2

- Many types of scoliosis, surgical management will depend on age and etiology
 - No major paradigm shift during the last 20 years
- Adolescent Idiopathic Scoliosis
 - Multilevel instrumentations
 - 3D-correction, shorter fusions
 - Importance of sagittal plane assessment / restoration
 - Anterior Vertebral Body Tethering is not a revolution
 - Remaining growth assessment is crucial
 - To be evaluated in the long-run

Conclusion - 3

- Many types of scoliosis, surgical management will depend on age and etiology
 - No major paradigm shift during the last 20 years
- Neuromuscular scoliosis
 - Pelvic obliquity is the challenge
 - Multilevel instrumentation possible but frail patients
 - Bipolar instrumentation is an interesting alternative
 - *"Automated" growth does not always work*

Hôpitaux Universitaires de Marseille

