Imaging in Neuroblastoma Annemieke Littooij

No disclosures

Introduction

Imaging primary tumor - HR NBL 2 protocol

Distant metastases

Take home points

Case — 2-year-old boy. Not feeling well

Introduction

1. Location - Site of origin:

Claw sign

Movement

Prominent vessel sign

2. Tumor characteristics (echogenicity, fat, calcifications..)

3. Patterns of spread

Key to differential diagnosis

Imaging

Location – Organ of origin

Tumor characteristics

Patterns of spread

Age

Tumor markers (urine metabolites)

Claw sign

Case – Claw sign? Imaging characteristics? Calcifications

Lifting aorta

Neuroblastoma

Neuroblastoma

- Most common extracranial solid tumor of childhood
- Embryonal tumor of sympathic nervous system
 - > 1/3 arises in the adrenal gland
- 90% of case before 5 years of age
- Can present antenatally
- Heterogenous group
 - Can show spontaneous regression in infants
 - Poor prognosis in high risk tumors with distant metastasis

Neuroblastoma

Discriminating imaging features:

- Growth pattern: encasing vessels/lifting aorta
- Internal calcifications
- Marked diffusion restriction

Tumor markers:

Urine metabolites (Catecholamines: HVA and VMA)

*** bpm

Internal calcifications

Clinical picture

3 main groups:

- Localized disease (40%)
- Disseminated disease (50%)
- 4S/MS disease (< 18 mo with mets to liver, skin or bone marrow)

Stratification

- Low
- Intermediate
- High risk

Depending on: Age, stage and tumor biology (MYCN amplification)

Imaging in Neuroblastoma

- * Ultrasound
- MRI (or CT) for primary tumor
- * [1231] mIBG for local and distant staging

Our MRI protocol

* c 3DT2

* t 3D t1 with fatsuppression before and after gd

* t DWI (bo,100 and 1000)

Spine: sT1TSE and sSTIR

& Brain: c STIR, tT2, sT1, t DWI, 3DT1 gd

Diffusion Weighted Imaging (DWI)

Role in Detection: > Higher sensitivity Reading time

Diffusion Weighted Imaging (DWI)

Diffusion-weighted MRI for differentiation of neuroblastoma and ganglioneuroblastoma/ganglioneuroma

Nina Gahr^{a,*}, Kassa Darge^{b,1}, Gabriele Hahn^c, Björn W. Kreher^d, Miriam von Buiren^e, Markus Uhl^f

EJR 2011

Role in Characterisation:

- ADC Neuroblastoma = 0.8
- ADC Ganglioneuroma = 1.6

[¹²³I]mIBG

NH

NH₂

Primary tumor

Distant metastasis

[¹²³]]mlBG scan

Scanning 24 hrs after injection of mIBG:

need for two visits

Total scan time ±1,5 hrs:
<u>often need for sedation</u>

Day 1 (24 hr before MIBG imaging)

Injection

¹²³I-mIBG

0

Day 2

90 Time (minutes)

Ь

SPECT

45

Limited resolution

PET tracers:

«[⁶⁸Ga]Ga-DOTA-peptides

◊[18F]F-DOPA

SIOPEN mIBG skeletal score system

- Evaluates skeletal uptake on a o-6 scale in 12 anatomical regions
- Max score 72

At diagnosis: Increased risk with cumulative scores

After induction: SIOPEN score >3 correlates with very poor outcome

[¹²³I]mIBG scan: SIOPEN score

12 skeletal segments

- End of induction total SIOPEN score > 3
- Bad prognosis > VERITAS

Introduction

Imaging primary tumor - HR NBL 2 protocol

Distant metastases

Take home points

Content

Introduction

Imaging primary tumor - HR NBL 2 protocol

Distant metastases

Take home points

Case: 4-year-old girl with pain and fever

April 2019

Febr 2019

Diagnosis: Neuroblastoma

Staging

- INSS (International Neuroblastoma Staging System) post-surgery •
- INRGSS (International Neuroblastoma Risk Group)
 - Stage L1 localised tumor, no IDRFs
 - Stage L2 locoregional tumor, IDRFs +
 - Stage M distant metastases
 - Stage MS metastases < 18 mo, confined to skin, liver and BM</p>

Image defined risk factors (IDRFs)

- Describe relationship of tumor with vital structures
 - Major vessels, airway, nerves
- Associated with high risk of surgical complications

- Warning for the surgeons
- Prognostic factor

Terminology

- Seperation (fatlayer visible)
- Contact (no fatlayer) •
- Encasement: > 180 gr contact •
- Compression (only for airways) •
- Infiltration = involvement other than vessels

According to Brisse et al 2011: renal vascular pedicle is IDRF postive when there is contact

Major criteria

- Multicompartment tumor
- Encasement of large vessels
- Contiguous organ infiltration
- Significant spinal extention
- Airway compression

Image defined risk factors (IDRFs) CONTACT **ENCASEMENT**

* Adapted from" Guidelines for imaging and staging Neuroblastic tumors: Consensus report from the INRG project. Brisse HJ et al. Radiology 2011

IDRFs

- ✤ IDRFs:
- * 1/3 of the spinal canal is invaded
- Trachea diameter is compressed

* Adapted from" Guidelines for imaging and staging Neuroblastic tumors: Consensus report from the INRG project. Brisse HJ et al. Radiology 2011

Case: 4-year-old girl with pain and fever

- INSS (International Neuroblastoma Staging System) post-surgery •
- INRGSS (International Neuroblastoma Risk Group)
 - Stage L1 localised tumor, no IDRFs
 - Stage L2 locoregional tumor, IDRFs +
 - Stage M distant metastases
 - Stage MS metastases < 18 mo, confined to skin, liver and BM</p>

Staging – INRGSS Stage M – IDRFs?

Staging – INRGSS Stage M – IDRFs?

IDRF – Contact with IVC, visible lumen

Staging – INRGSS Stage M – IDRFs?

IDRF +

Encasement > 180: Aorta + renal vessels Spinal canal extention > 1/3

IDRF – Contact with IVC, visible lumen

High risk NBL

- Stage M over the age of 12 months, any MYCN status
- * L2, M or Ms with MYCN amplification, any age

✤ 3-yrs EFS of 40%

SIOPEN - HR NBL-2

Time points of imaging evaluation

- Staging
- Pre-operative assessment: CT or MRI?
- Identification of residual disease before RT: diagnostic criteria?
- Evaluation before maintenance •
- Surveillance relapse?

After extensive chemo: for surgical planning

Staging

After chemo

After extensive chemo: for surgical planning

For surgical planning ~ CT > MRI

Received: 28 February 2019 Revised: 7 July 2019 Accepted: 10 July 2019 DOI: 10.1002/pbc.27955

RESEARCH ARTICLE

Preoperative computed tomography scanning for abdominal neuroblastomas is superior to magnetic resonance imaging for safe surgical planning

Conclusion: MRI underestimated the extent of the disease in half of our patients considered for NBL resection. This may be due in part to tumor fibrosis, calcification, and chemotherapy. Preoperative CT scan is the best imaging modality to identify all IDRFs after chemotherapy to ensure safe surgery.

Katherine Burnand¹ Giuseppe Barone² Kieran McHugh³ Kate Cross¹

N=24, surgery in 17 cases

For surgical planning ~ CT > MRI

Received: 28 February 2019 Revised: 7 July 2019 Accepted: 10 July 2019 DOI: 10.1002/pbc.27955

RESEARCH ARTICLE

safe surgical planning

Katherine Burnand¹ 🕞 📗

Preoperative computed tomography scanning for abdominal neuroblastomas is superior to magnetic resonance imaging for

Giuseppe Barone² | Kieran McHugh³ | Kate Cross¹

lisease in half of our patients considered for osis, calcification, and chemotherapy. Preoptify all IDRFs after chemotherapy to ensure

SIOPEN - HR NBL-2

After resection. Pre-RT assessment

Before surgery

After surgery

After surgery

Before surgery

Staging

Definition of residual disease

- MRI shows definite residual tumor and/or
- mIBG shows residual tumor and/or
- Surgical report mentions residual tumor (marks with MRI compartible clips)

Definite residual disease?

DWI?

MIBG?

Definitive residual disease?

- Residual disease:
 - All solid tissue that was present pre-surgery and is still visible should be considerd positive
 - Use previous imaging and surgical report!

- Fibrosis/post-operative changes versus viable tumor? •
 - MIBG is not very sensitive for small lesions
 - Role for DWI or 48-hours post-resection MRI?

Currently in CR?

ADC value 1.1

Currently – CR?

ADC value 1.1

FNH like lesion

FNH like lesions

Incidence and Etiology of New Liver Lesions in Pediatric Patients Previously Treated for Malignancy

Ethan A. Smith^{1,2} Shelia Salisbury³ Rose Martin¹ Alexander J. Towbin¹

OBJECTIVE. The purpose of this study was to retrospectively evaluate the time course, cause, and imaging characteristics of all new liver lesions in pediatric patients with a previously treated malignancy.

MATERIALS AND METHODS. Our hospital cancer registry was used to identify patients between 1980 and 2005 who met the following criteria: solid tumor, survival > 2 years

♦ N=273

- * 3% livermets
- * 14% benign liverlesions

FNH like lesions

- Related to vascular injury
 - Alkylating agents (eg busulfan/ melphalan ~ BuMel)
 - Veno-occlusive disease
 - Radiotherapy
 - >>> not rarely after HR NBL treatment!

Introduction

Imaging primary tumor - HR NBL 2 protocol

Distant metastases

Take home points

Content

Introduction

Imaging primary tumor - HR NBL 2 protocol

Distant metastases

Take home points

Role of MRI in distant metastases?

Skull base, calvaria, orbits (25%)

Bone marrow metastases

Virchow node

WB MRI - bone marrow mets?

Integrated Imaging Using MRI and ¹²³I Metaiodobenzylguanidine Scintigraphy to Improve Sensitivity and Specificity in the Diagnosis of **Pediatric Neuroblastoma**

Pfluger et al. AJR 2003

C/Intergrated imaging showed highest sensitivity and specificity

WB MRI - bone marrow mets?

- Highly sensitive for staging (+DWI)
- * Role in MIBG negative tumors?
- - Signal changes persist longer than presence of malignant cells (~lymphoma)
 - * Role of ADC value? how reliable can we measure? Cut off value?

Normal red bone marrow vs diffuse mets?

6 months old with MS

4 months later

Take home messages

Diagnostic features: growth pattern, calcifications & diffusion restriction

Staging: IDRFs

Important time points: pre-operative assessment and pre-RT assessment

Role of MRI in bone marrow metastases?

Thank you for your attention

